Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow.
نویسندگان
چکیده
The optimal amplifications of small coherent perturbations within turbulent pipe flow are computed for Reynolds numbers up to one million. Three standard frameworks are considered: the optimal growth of an initial condition, the response to harmonic forcing and the Karhunen-Loève (proper orthogonal decomposition) analysis of the response to stochastic forcing. Similar to analyses of the turbulent plane channel flow and boundary layer, it is found that streaks elongated in the streamwise direction can be greatly amplified from quasistreamwise vortices, despite linear stability of the mean flow profile. The most responsive perturbations are streamwise uniform and, for sufficiently large Reynolds number, the most responsive azimuthal mode is of wave number m=1 . The response of this mode increases with the Reynolds number. A secondary peak, where m corresponds to azimuthal wavelengths λ_{θ}^{+}≈70-90 in wall units, also exists in the amplification of initial conditions and in premultiplied response curves for the forced problems. Direct numerical simulations at Re=5300 confirm that the forcing of m=1,2 and m=4 optimal structures results in the large response of coherent large-scale streaks. For moderate amplitudes of the forcing, low-speed streaks become narrower and more energetic, whereas high-speed streaks become more spread. It is further shown that drag reduction can be achieved by forcing steady large-scale structures, as anticipated from earlier investigations. Here the energy balance is calculated. At Re=5300 it is shown that, due to the small power required by the forcing of optimal structures, a net power saving of the order of 10% can be achieved following this approach, which could be relevant for practical applications.
منابع مشابه
Drag Reduction by Surfactant Solutions in Gravity Driven Flow Systems
Efflux time measurements are carried out for gravity draining of a liquid from a large cylindrical tank (where the flow is essentially laminar) through single exit pipe in the absence and presence of Cetyl Pyridinium Chloride (CPC) surfactant solutions. The variables considered are initial height of liquid in the tank, dia. of tank, length of the exit pipe and concentration of surfactant. T...
متن کاملA Mechanism of Polymer Induced Drag Reduction in Turbulent Pipe Flow
Polymer induced drag reduction in turbulent pipe flow was investigated using a non-intrusive laser based diagnostic technique, namely Particle Image Velocimetry (PIV). The drag reduction was measured in a pressure-driven flow facility, in a horizontal pipe of inner diameter 25.3 mm at Reynolds numbers ranging from 35 000 to 210 000. Three highmolecular-weight polymers (polyethylene oxide 2×10 6...
متن کاملDrag Reduction by Anionic Surfactant Solutions in Gravity Driven Flow System
This paper presents efflux time experiments performed in the absence and presence of aqueous solutions of Drag Reducing Agents (DRAs) when a liquid is emptied from a large open cylindrical storage tank through an exit piping system. The drag reducing agents studied are Dodecyl benzene sulfonate anionic surfactant and a mixed solution of surfactant and sodium chloride counter ion. The variab...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملTurbulent Drag Reduction by Spanwise Wall Oscillations
The objective of this paper is to examine the effectiveness of wall oscillation as a control scheme of drag reduction. Two flow configurations are considered: constant flow rate and constant mean pressure gradient. The Navier-Stokes equations are solved using Fourier-Chebyshev spectral methods and the oscillation in sinusoidal form is enforced on the walls through boundary conditions for the sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2010